Министерство просвещения Кабардино - Балкарской Республики Управление образования местной администрации Терского муниципального района МКОУ СОШ №5 г.п. Терек

PACCMOTPEHA

на заседании

Педсовета

протокол №1 от 31.08.2025г. СОГЛАСОВАНА

И.о. заместителя

директора по УВР

Такова Д.Х.

УТВЕРЖДЕНА

И.о. директора МКО СОШ № Т. П. Терек

Тумова В. Х. Терек

приказ №12

от 31.08.2025г.

Рабочая программа

курса внеурочной деятельности

«СОВРЕМЕННЫЕ ИССЛЕДОВАНИЯ И ДОСТИЖЕНИЯ НАНОХИМИИ»

(для 10 класса)

Разработчики программы:

Волкова Светлана Александровна,

доктор педагогических наук, профессор, профессор кафедры методики преподавания химии, биологии, экологии и географии ФГАОУ ВО «Государственный университет просвещения»

Колясников Олег Владимирович,

старший методист Института развития профильного обучения ГАОУ ВО «Московский городской педагогический университет»

Оболенская Любовь Николаевна,

кандидат химических наук, методист Института развития профильного обучения ГАОУ ВО «Московский городской педагогический университет»

Рецензенты:

Паршутина Людмила Александровна,

кандидат педагогических наук, заведующая лабораторией естественнонаучного образования ФГБНУ «Институт содержания и методов обучения»

Заграничная Надежда Анатольевна,

кандидат педагогических наук, старший научный сотрудник лаборатории естественно-научного образования ФГБНУ «Институт содержания и методов обучения»

СОДЕРЖАНИЕ

Пояснительная записка	4
Содержание курса внеурочной деятельности «Современные исследования и достижения	
нанохимии»	10
10 класс	10
11 класс	12
Планируемые результаты освоения курса внеурочной деятельности «Современные	
исследования и достижения нанохимии»	15
Личностные результаты	15
Метапредметные результаты	17
Предметные результаты	
Тематическое планирование	22
10 класс	
11 класс	
Организационно-педагогические условия реализации Программы	29
Литература и электронные ресурсы	30

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Нанохимия является естественно-научной основой нанотехнологий, играющих крайне важную роль в современной технико-экономической парадигме. Нанохимия исследует способы получения и стабилизации, свойства, особенности строение И химических превращений нанообъектов и наноматериалов, а также их практические приложения. Нанохимия стала развитием коллоидной c одной логическим химии, и супрамолекулярной химии – с другой. Обе этих дисциплины критично важны для корректного понимания нанохимических подходов.

Развитие нанохимии и нанотехнологий сегодня служит фокусом для приложения сил ведущих ученых и исследовательских коллективов. Наноматериалы на органической и неорганической основе применяются в огромном количестве продуктов современной промышленности. Описываемое направление служит одним из столпов так называемой NBIC-конвергенции, входящей в ядро предсказываемого футурологами VI технологического уклада.

Рабочая программа курса внеурочной деятельности «Современные исследования и достижения нанохимии» (далее — Программа) естественно-научной направленности позволяет осветить обучающимся 10–11 классов основные тезисы нанохимии, а также наметить основные направления развития науки о мире нанообъектов и ее технологических приложений, получить понятие о современных научных методах. Реализация Программы позволит достичь более полного понимания школьниками естественно-научного подхода к изучению природы и развитию на его основе технологий, меняющих мир.

Актуальность Программы

Нанохимия в своих проявлениях относится к области естественных наук в целом. Изначально сформировавшись на стыке химии и физики, нанохимические подходы во многом влияют на современное понимание молекулярных основ биологии и других наук. Тем не менее в школьных курсах

естественно-научным предметам нанохимией, ПО темы, связанные cрасполагаются порознь и занимают крайне малый общий объем. В части возможного дублирования с ФОП СОО по предметной области «Естественнонаучные предметы» Программа почти не пересекается ни с федеральной рабочей программой по учебному предмету «Химия» (темы «Аллотропные модификации углерода», «Понятие о дисперсных системах», «Представление о коллоидных растворах» в разделе «Теоретические основы химии», а также упоминание нанотехнологий в разделе «Химия и жизнь»); ни с федеральной рабочей программой по учебному предмету «Физика» («Поверхностное натяжение» в теме «Агрегатные состояния вещества. Фазовые переходы»; упоминание «Получение наноматериалов» в теме «Основы молекулярно-кинетической теории»); ни с федеральной рабочей программой по учебному предмету «Биология» («Общие свойства биологических мембран» в теме «Химическая организация клетки»; «Нанотехнологии в биологии и медицине»).

Программа разработана в соответствии с требованиями федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО). Необходимость реализации Программы связана с крайне широким распространением продуктов нанохимии В современном мире и вышеупомянутым недостаточным отражением основных принципов, на которых построена, В основной образовательной она программе. Для частичной компенсации этого разрыва в Москве уже много лет проводится олимпиада по нанотехнологиям – Олимпиада школьников «Высокие технологии и материалы будущего». Задания Олимпиады позволяют школьникам понять, этой междисциплинарной области. насколько они ориентируются Систематическое же получение знаний возможно организовать на уровне общего образования в рамках внеурочной деятельности дополнительного образования, в частности при реализации данной Программы.

Большое внимание в Программе уделено методам получения и изучения

программы позволяет увидеть яркие стороны нанохимии при относительной доступности выполнения учебно-исследовательского эксперимента и во многом базируется на примерах лабораторных работ, изложенных в Практикуме по наноматериалам и нанотехнологиям А.Б. Щербакова и В.К. Иванова [16]. Изучение нанохимии открывает много нового и неожиданного как для учеников, так и для педагогов. Проектная и исследовательская деятельность по нанохимии, которая может выполняться с опорой на Программу, при должной постановке будет приводить к объективно новым результатам, ранее не описанным в научной литературе.

Новизна Программы заключается в том, что она построена на пошаговом ознакомлении обучающихся с основами нанонауки и ее приложениями.

Реализация Программы способствует детализации знаний обучающихся о физико-химических процессах, протекающих на наноуровне, расширению представлений о возможностях применения нанохимических подходов, способствует профориентации обучающихся.

Педагогическая целесообразность Программы заключается в том, что она создает условия для формирования у обучающихся естественно-научной картины мира, развивает умение критического осмысления информации, дает возможность получить навык проведения учебно-исследовательского эксперимента, расширяет базис для углубленного изучения нанохимических процессов в высшей школе.

Цель Программы — дать обучающимся краткий экскурс в межпредметную область нанотехнологий и импульс к самостоятельному изучению и творческому развитию; данная область в настоящее время является одной из «точек роста» для развития промышленности и находит многочисленные применения в современной технике.

Варианты реализации Программы и формы проведения занятий

Реализация Программы предполагает сочетание лекционной и семинарской форм работы с элементами практикума: лекции, семинары, дискуссии, защиты проектов, учебно-исследовательский эксперимент, практические работы — изображение химических формул, визуализация трехмерных объектов и пр.

В семинарской части возможна смена индивидуальных и групповых форм проведения в зависимости от предпочтений педагога. В практической части встречаются как учебно-исследовательский эксперимент, так и компьютерный практикум.

При реализации Программы используется вычислительная техника, обеспечивающая доступ к специализированному программному обеспечению и научной литературе.

Для самостоятельного изучения предусмотрен список актуальной литературы по описываемой области, рассчитанный как на учителей, так и на школьников, участвующих в реализации Программы.

Программа разработана для обучающихся профильных 10—11 классов (естественно-научный профиль обучения). Программа рассчитана на 2 года обучения. Общее количество времени, отводимого на освоение Программы, составляет 68 часов. Программа реализуется 1 раз в неделю по 1 часу. Вариантом реализации может быть изучение Программы в 10 классе в режиме занятий 2 часа в неделю.

Формы контроля служат для определения результативности освоения Программы обучающимися. Аттестация проводится 1 раз в год: промежуточная – по итогам первого года обучения, итоговая – весной второго года обучения.

Формы проведения аттестации:

- тестирование;
- практические занятия;
- зачетная работа.

Взаимосвязь с федеральной рабочей программой воспитания

Программа разработана с учетом рекомендаций федеральной рабочей программы воспитания для общеобразовательных организаций. Она учитывает психолого-педагогические особенности соответствующей возрастной категории обучающихся.

В частности, в ходе реализации Программы возможно сочетать как интеллектуальное, так и социальное развитие обучающихся, создающее основы для их самоопределения на основе духовно-нравственных ценностей.

К задачам реализации данной Программы можно отнести достижение личностных результатов освоения общеобразовательных программ по физике, химии и биологии в соответствии с ФГОС СОО, а именно: сформированность пенностей самостоятельности и инициативы, готовность обучающихся к саморазвитию, самостоятельности и личностному самоопределению, наличие мотивации целенаправленной социально значимой деятельности, К сформированность внутренней позиции личности как особого ценностного отношения к себе, окружающим людям и жизни в целом.

Программа соответствует следующим основным направлениям воспитания: гражданское воспитание, патриотическое воспитание, духовнонравственное воспитание, эстетическое воспитание, формирование культуры здорового образа жизни, трудовое воспитание, экологическое воспитание, воспитание ценности научного познания.

Особенности работы педагога по Программе

Перед преподавателем, работающим по Программе, стоит задача гармоничного сочетания элементов химии, биологии, физики и информатики, которые необходимы для конвергентного понимания нанохимии. Тем не менее акцент в составлении Программы сделан на химические аспекты нанонауки, что может частично смягчить кадровый вопрос в реализации Программы. Усвоение обучающимися новых знаний в этой области тесно связано с успешностью реализации учебно-исследовательского эксперимента и практических работ,

заложенных в Программу. При недостаточности материально-технического оснащения образовательной организации рекомендуется сделать акцент в реализации Программы на работу с цифровыми ресурсами. Возможно сокращение количества планируемых практических работ для углубления работы над теоретическими разделами Программы.

Отличительная особенность Программы состоит в том, что в ее построении и реализации:

- развиваются межпредметные связи, заложенные в основной образовательной программе;
- восполняется дефицит современной научной информации, прослеживается взаимосвязь классических достижений химии и физики с их приложениями в современной нанотехнологии;
 - развиваются познавательные компетенции обучающихся;
- активно используются современные экспериментальные и вычислительные методы;
- поддерживается ориентация обучающихся на последующую специализацию в области как фундаментальной, так и прикладной науки.

СОДЕРЖАНИЕ КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ «СОВРЕМЕННЫЕ ИССЛЕДОВАНИЯ И ДОСТИЖЕНИЯ НАНОХИМИИ»

10 КЛАСС

Раздел 1. Организационное занятие «Нанохимия и нанотехнология как междисциплинарная область». Цели и задачи курса. Инструктаж

Тема 1.1. Введение в Программу

Теория. Формы и методы деятельности. План работы на учебный год. Инструктаж по технике безопасности.

Практика. Первичная диагностика. Входное тестирование.

Раздел 2. История науки о дисперсных системах

Тема 2.1. Начало изучения поверхностных явлений и дисперсных систем

Теория. Капилляры и закон Лапласа. Изучение адсорбции (К. Шееле, Т. Ловиц). Металлические золи (М. Фарадей). Броуновское движение. Осмос и диализ (Т. Грэм). Коллоидные системы. Определение числа Авогадро (Ж. Перрен). Эффект Ребиндера. Термин «нанотехнологии», история его появления и популяризации (Р. Фейнман, Н. Танигути, Э. Дрекслер).

Практика. Учебно-исследовательский эксперимент: Изучение адсорбции красителей с помощью активированного угля. Определение его сорбционной способности.

Раздел 3. Основы физики поверхности и дисперсных сред

Тема 3.1. Основы физики поверхности

Теория. Физико-химические свойства атомов на поверхности. Поверхностное натяжение. Адсорбция. Смачивание.

Практика. Учебно-исследовательский эксперимент: Определение поверхностного натяжения воды методом отрыва капель.

Тема 3.2. Свойства дисперсных сред

Теория. Электрические свойства. Устойчивость. Физико-химическая механика.

Практика. Учебно-исследовательский эксперимент: Оценка толщины графитовой линии в зависимости от мягкости карандаша.

Раздел 4. Дисперсные системы: получение и применение

Тема 4.1. Классификация дисперсных систем

Теория. Классификация дисперсных систем. Понятия «наноматериал», «нанообъект». Виды нанообъектов (0D, 1D, 2D; микро-, мезо- и макропористые). Яркие примеры проявления размерного эффекта.

Практическая работа: Моделирование структуры наночастиц разного размера, сравнение доли поверхностных атомов и числа нескомпенсированных валентностей.

Тема 4.2. Дисперсные системы, содержащие газовую фазу

Теория. Пены, аэрозоли и аэрогели.

Практика. Учебно-исследовательский эксперимент: Определение устойчивости пены моющих средств.

Тема 4.3. Дисперсные системы, содержащие жидкую фазу

Теория. Золи, гели, эмульсии и суспензии. Положение золей на шкале дисперсности коллоидных систем.

Практика. Учебно-исследовательский эксперимент: Получение золей наноструктурированного серебра.

Тема 4.4. Дисперсные системы, содержащие поверхностно-активные вещества

Теория. Поверхностно-активные вещества. Мембраны, мицеллы и липосомы. Биологические дисперсные системы.

Практика. Учебно-исследовательский эксперимент: Изучение влияния поверхностно-активных веществ на поверхностное натяжение.

Тема 4.5. Методы визуализации наночастиц

Теория. Эффект Тиндаля. Анализ траекторий движения наночастиц.

Практика. Учебно-исследовательский эксперимент: Демонстрация эффекта Тиндаля на дисперсных системах различного рода.

Раздел 5. Методы синтеза наноструктурированных веществ и материалов

Тема 5.1. Принцип «сверху-вниз»

Теория. Принципы получения наноструктур: «сверху-вниз» и «снизу-вверх». Получение графена. Особенности работы планетарных мельниц.

Практика: Практическая работа: Построение модели планетарной мельницы.

Тема 5.2. Принцип «снизу-вверх»

Теория. Основы супрамолекулярной химии. Самосборка. Методы синтеза наночастиц: «мягкой химией» – золь-гель, «гомогенного осаждения», обращенно-мицеллярный, микроэмульсионный; термолиз, CVD. Методы стабилизации наночастиц: стерическая, хелатная, электростатическая, иммобилизацией в матрице. Направленный синтез нанообъектов: квантовые объемные наноматериалы. Модификация свойств точки, нанопленки. наноматериалов.

Практика: Учебно-исследовательский эксперимент: Газофазный синтез нанокристаллического хлорида аммония. Получение золей наномагнетита, наноразмерного диоксида титана, берлинской лазури. Получение нанопленок серебра на стеклянной подложке. Оценка их толщины.

Промежуточная аттестация.

11 КЛАСС

Раздел 6. Методы исследования наноструктурированных веществ и материалов

Тема 6.1. Оптические методы

Теория. Оптические свойства наночастиц и наноматериалов. Микроскопия. Дифракционный предел. Фотометрия. Спектрофотометрия: измерение пропускания, поглощения, люминесценции. Динамическое светорассеяние.

Практика: Практическая работа: Микроскопическое изучение препаратов наносеребра на стеклах.

Тема 6.2. Электронная микроскопия

Теория. Электронная микроскопия: просвечивающая и сканирующая. Особенности изучения биологических объектов на наноуровне.

Практика: Практическая работа: Сравнительный анализ изображений наноструктур, полученных электронной микроскопией.

Тема 6.3. Рентгеновская дифрактометрия

Теория. Рентгенофазовый анализ. Уширение пиков как признак нанообъекта и как способ оценки размера кристаллитов. Рентгеноструктурный анализ. Определение структуры наноразмерных объектов на атомном уровне.

Практика: Практическая работа: Визуализация структур биополимеров, полученных методом рентгеноструктурного анализа.

Тема 6.4. Сканирующая зондовая микроскопия

Теория. Туннельная микроскопия. Атомно-силовая микроскопия. Анализ наноструктуры поверхностей. Статический и динамический режим сканирования.

Практическая работа: Анализ изображений, полученных методом атомно-силовой микроскопии, с помощью современного программного обеспечения. Учебно-исследовательский эксперимент: Изучение поверхности методом атомно-силовой микроскопии.

Раздел 7. Функциональные свойства наноструктурированных веществ и материалов

Тема 7.1. Функциональные свойства вещества, обеспечиваемые наноматериалами

Теория. Сверхнизкая смачиваемость. Сверхпрочность. Высокотемпературная сверхпроводимость. Сверхфильтрация. Сверхъяркость светоиспускания. Сухая адгезия (биомиметика геккона). Магнитные свойства.

Практика. Учебно-исследовательский эксперимент: Изучение «эффекта лотоса» на примере лепестка розы. Измерение краевого угла.

Раздел 8. Нанотехнологии — перспективы развития и состояние науки на сегодняшний день

Тема 8.1. Современные применения нанотехнологии

Теория. Современные применения нанотехнологии, общий обзор.

Практика. Викторина: Нанотехнологии в нашей жизни.

Тема 8.2. Углеродные наноматериалы

Теория. Особая роль углерода в наномире. Фуллерены, графен, нанотрубки.

Практичес практическая работа: Моделирование пространственной структуры фуллеренов.

Тема 8.3. Наноматериалы для энергетики

Теория. Наноматериалы в топливных элементах. Литий-ионные аккумуляторы. Суперконденсаторы.

Практика. Учебно-исследовательский эксперимент: Измерение емкости литий-ионного аккумулятора.

Тема 8.4. Наноэлектроника

Теория. Закон Мура. Технологический процесс производства интегральных микросхем. Системы записи информации.

Практическая работа: Анализ изображения поверхности компакт-диска.

Тема 8.5. Наноматериалы в медицине и экологии

Теория. Нанодиагностика. Применение наноматериалов в терапии. Наносорбенты. Фотокатализаторы. Самоочистка.

Практическая работа: Визуализация пространственной структуры нанобиопрепаратов с помощью современного программного обеспечения.

Раздел 9. Актуальные проблемы в области нанохимии и нанотехнологии

Тема 9.1. Дискуссия

Теория. Актуальные проблемы в области нанохимии и нанотехнологии.

Практика. Итоговая аттестация. Зачетная работа.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ «СОВРЕМЕННЫЕ ИССЛЕДОВАНИЯ И ДОСТИЖЕНИЯ НАНОХИМИИ»

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

В сфере гражданского воспитания:

способность определять собственную позицию по отношению к явлениям современной жизни и объяснять ее;

готовность к сотрудничеству в процессе совместного выполнения учебных, познавательных и исследовательских задач, уважительного отношения к мнению оппонентов при обсуждении спорных вопросов естественно-научного содержания.

В сфере патриотического воспитания:

уважение к процессу творчества в области теории и практического приложения нанонауки, осознания того, что успехи науки и технологии есть результат длительных наблюдений, кропотливых экспериментальных поисков, постоянного труда ученых и практиков;

способность оценивать вклад российских ученых в становление и развитие нанохимии, понимание значения науки в познании законов природы, в жизни человека и современного общества.

В сфере духовно-нравственного воспитания:

осознание личного вклада в построение устойчивого будущего;

способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности.

В сфере эстетического воспитания:

эстетическое отношение к миру, включая эстетику научного и технического творчества.

В сфере формирования культуры здоровья:

соблюдение правил безопасного обращения с веществами в быту, повседневной жизни, в трудовой деятельности;

осознание последствий и неприятие вредных привычек (употребления алкоголя, наркотиков, курения);

понимание ценности правил индивидуального и коллективного безопасного поведения в ситуациях, угрожающих здоровью и жизни людей.

В сфере трудового воспитания:

коммуникативная компетентность в учебно-исследовательской деятельности, общественно полезной, творческой и других видах деятельности;

интерес к практическому изучению профессий различного рода, в том числе на основе применения предметных знаний по химии и физике;

уважение к труду, людям труда и результатам трудовой деятельности;

готовность к осознанному выбору индивидуальной траектории образования, будущей профессии и реализации собственных жизненных планов с учетом личностных интересов, способностей к науке, интересов и потребностей общества.

В сфере экологического воспитания:

экологически целесообразное отношение к природе как источнику существования жизни на Земле;

наличие развитого экологического мышления, экологической культуры, опыта деятельности экологической направленности, умения руководствоваться ими в познавательной, коммуникативной и социальной практике, способности и умения активно противостоять идеологии хемофобии;

способность использовать приобретаемые при изучении нанохимии знания и умения при решении проблем, связанных с рациональным природопользованием (соблюдение правил поведения в природе, направленных на сохранение равновесия в экосистемах, охрану видов, экосистем, биосферы);

осознание глобального характера экологических проблем и путей их решения.

В сфере ценностей научного познания:

понимание специфики нанонауки, осознание ее роли в формировании рационального научного мышления, создание целостного представления

об окружающем мире как о единстве природы, человека и общества, в познании природных закономерностей и решении проблем сохранения природного равновесия;

понимание сущности методов познания, используемых в естественных науках, способности использовать получаемые знания для анализа и объяснения явлений окружающего мира и происходящих в нем изменений, умение делать обоснованные заключения на основе научных фактов и данных, полученных в ходе учебно-исследовательского эксперимента, с целью получения достоверных выводов;

заинтересованность в получении естественно-научных знаний в целях повышения общей культуры, естественно-научной грамотности как составной части функциональной грамотности, формируемой при обучении;

готовность и способность к непрерывному образованию и самообразованию, к активному получению новых знаний в соответствии с жизненными потребностями.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

В сфере овладения познавательными универсальными учебными действиями:

Базовые логические действия:

самостоятельно формулировать и актуализировать проблему, рассматривать ее всесторонне;

использовать при освоении знаний приемы логического мышления (анализа, синтеза, сравнения, классифицирования, обобщения), раскрывать смысл научных понятий (выделять их характерные признаки, устанавливать связи с другими понятиями);

определять цели деятельности, задавая параметры и критерии их достижения, соотносить результаты деятельности с поставленными целями;

использовать научные понятия для объяснения фактов и явлений природы;

строить логические рассуждения (индуктивные, дедуктивные, по аналогии), выявлять закономерности и противоречия в рассматриваемых явлениях, формулировать выводы и заключения;

применять схемно-модельные средства для представления существенных связей и отношений в изучаемых объектах, а также противоречий разного рода, выявленных в различных информационных источниках;

разрабатывать план решения проблемы с учетом анализа имеющихся материальных и нематериальных ресурсов.

Базовые исследовательские действия:

владеть научной терминологией, ключевыми понятиями и методами нанонауки;

владеть навыками учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способностью и готовностью к самостоятельному поиску методов решения практических задач, применению различных методов познания;

использовать различные виды деятельности по получению нового знания, его интерпретации, преобразованию и применению в учебных ситуациях, в том числе при создании учебных и социальных проектов;

формировать научный тип мышления, владеть научной терминологией, ключевыми понятиями и методами;

ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;

уметь интегрировать знания из разных предметных областей.

Работа с информацией:

владеть навыками получения информации из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;

оценивать достоверность информации;

формулировать запросы и применять различные методы при поиске и отборе информации, необходимой для выполнения учебных задач;

самостоятельно выбирать оптимальную форму представления информации (схемы, графики, диаграммы, таблицы, рисунки и др.);

использовать научный язык в качестве средства при работе с информацией: применять химические, физические и математические знаки и символы, формулы, аббревиатуру, номенклатуру, использовать и преобразовывать знаково-символические средства наглядности.

В сфере овладения универсальными коммуникативными действиями:

осуществлять общение во внеурочной деятельности;

развернуто и логично излагать свою точку зрения с использованием языковых средств;

понимать и использовать преимущества командной и индивидуальной работы;

выбирать тематику и методы совместных действий с учетом общих интересов и возможностей каждого члена коллектива;

принимать цели совместной деятельности, организовывать и координировать действия по ее достижению: составлять план действий, распределять роли с учетом мнений участников, обсуждать результаты совместной работы;

оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;

осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

В сфере овладения универсальными регулятивными действиями:

Самоорганизация:

использовать научные знания для выявления проблем и их решения в жизненных и учебных ситуациях;

самостоятельно осуществлять познавательную деятельность, выявлять проблемы, ставить и формулировать собственные задачи;

самостоятельно составлять план выполнения учебно-исследовательского эксперимента с учетом имеющихся ресурсов, собственных возможностей и предпочтений;

расширять рамки учебного предмета на основе личных предпочтений;

делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;

оценивать приобретенный опыт;

способствовать формированию и проявлению эрудиции в области естественных наук, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль:

давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;

принимать мотивы и аргументы других при анализе результатов деятельности;

использовать приемы рефлексии для оценки ситуации, выбора верного решения;

уметь оценивать риски и своевременно принимать решения по их снижению.

Принятие себя и других:

принимать себя, понимая свои недостатки и достоинства; признавать свое право и право других на ошибки.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

По итогам реализации Программы обучающиеся будут знать:

основные положения законов, теорий, закономерностей, правил, гипотез в области современных нанонауки и нанотехнологии;

биографические данные и основные достижения ведущих представителей науки о дисперсных средах и нанохимии;

основополагающие нанохимические термины и понятия (наночастица, наноматериалы, наноструктуры, наносистемы и др.);

строение основных надмолекулярных структур, присутствующих в дисперсных средах;

возможности направленного синтеза и модификации наноструктурированных веществ и материалов;

функциональные возможности наноструктурированных веществ и материалов;

основные методы научного познания, используемые в нанохимических и нанотехнологических исследованиях;

основные приложения наноструктурированных веществ и материалов.

ключевые достижения в области нанотехнологии;

По итогам реализации Программы обучающиеся будут уметь:

пользоваться терминологией, относящейся к нанохимии и нанотехнологии;

различать различные уровни организации материи в наноструктурированных объектах;

собирать шаро-стержневые модели структур нанообъектов;

применять программное обеспечение для визуализации пространственной структуры нанообъектов;

планировать и проводить учебно-исследовательский эксперимент по изучению свойств дисперсных систем;

анализировать изображения наноструктурированных объектов, полученные различными методами изучения;

устанавливать взаимосвязи между наукой и технологиями, наноматериалами и их свойствами, методами исследования и их возможностями;

оценивать этические аспекты современных исследований в области нанотехнологий;

самостоятельно работать с источниками дополнительной литературы и интернет-ресурсами, включая ресурсы на английском языке.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 КЛАСС

$\mathcal{N}_{\underline{o}}$	Наименование	Количество	Программное	Характеристика
n/n	разделов	часов	содержание	деятельности
	и тем курса			обучающихся
Разде	л 1. Организационно	ое занятие «На	анохимия и нанотехноло	огия как
межд	исциплинарная обла	сть»		
1.1.	Введение	2	Формы и методы	Первичная
	в Программу		деятельности. План	диагностика. Входное
			работы на учебный	тестирование
			год. Инструктаж	-
			по технике	
			безопасности	
Итого	l о по разделу	2		
	ел 2. История науки о	 D дисперсных	<u> </u> системах	
2.1	Начало изучения	4	Капилляры и закон	Учебно-
,	поверхностных		Лапласа. Изучение	исследовательский
	явлений		адсорбции (К. Шееле,	
	и дисперсных		Т. Ловиц).	эксперимент:
	систем		Металлические золи	Изучение адсорбции
	CHCICM		(М. Фарадей).	красителей с помощью
			Броуновское	активированного угля.
			движение. Осмос	Определение его
				сорбционной
			и диализ (Т. Грэм).	способности
			Коллоидные системы.	
			Определение числа	
			Авогадро (Ж. Перрен).	
			Эффект Ребиндера.	
			Термин	
			«нанотехнологии»,	
			история его появления	
			и популяризации	
			(Р. Фейнман,	
			Н. Танигути,	
			Э. Дрекслер)	
Итого	о по разделу	4		

Разд	ел 3. Основы физики	поверхности	и дисперсных сред	
3.1 3.2	Основы физики поверхности Свойства дисперсных сред	4	Физико-химические свойства атомов на поверхности. Поверхностное натяжение. Адсорбция. Смачивание Электрические свойства. Устойчивость. Физико-химическая механика	Учебно- исследовательский эксперимент: Определение поверхностного натяжения воды методом отрыва капель Учебно- исследовательский эксперимент: Оценка толщины графитовой линии
	о по разделу	8		в зависимости от мягкости карандаша
Разд	ел 4. Дисперсные сист	емы: получе	ние и применение	
4.1	Классификация дисперсных систем	2	Понятия «наноматериал», «нанообъект». Виды нанообъектов (0D, 1D, 2D; микро-, мезо- и макропористые). Яркие примеры проявления размерного эффекта	Практическая работа: Моделирование структуры наночастиц разного размера, сравнение доли поверхностных атомов и числа нескомпенсированных валентностей
4.2	Дисперсные системы, содержащие газовую фазу	2	Пены, аэрозоли и аэрогели	Учебно- исследовательский эксперимент: Определение устойчивости пены моющих средств
4.3	Дисперсные системы, содержащие жидкую фазу	2	Золи, гели, эмульсии и суспензии. Положение золей на шкале дисперсности коллоидных систем	Учебно- исследовательский эксперимент: Получение золей наноструктурирован- ного серебра

1.1	Пууатарауууа	3	Пополучио отчи	
4.4	Дисперсные	3	Поверхностно-	Учебно-
	системы,		активные вещества.	исследовательский
	содержащие		Мембраны, мицеллы	эксперимент:
	поверхностно-		и липосомы.	Изучение влияния
	активные вещества		Биологические	поверхностно-
			дисперсные системы	активных веществ
				на поверхностное
				натяжение
4.5	Методы	1	Эффект Тиндаля.	Учебно-
	визуализации		Анализ траекторий	исследовательский
	наночастиц		движения наночастиц	эксперимент:
				Демонстрация
				эффекта Тиндаля
				на дисперсных
				системах различного
				рода
Итого	 о по разделу	10		роди
	<u>-</u>		NUNCONIULIV DOMOCTO U N	лоторио пор
			рированных веществ и м	
5.1	Принцип «сверху-	2	Принципы получения	Практическая работа:
	ВНИЗ>>		наноструктур:	Построение модели
			«сверху-вниз»	планетарной
			и «снизу-вверх».	мельницы
			Получение графена.	
			Особенности работы	
			планетарных мельниц	
5.2	Принцип «снизу-	8	Основы	Учебно-
	вверх»		супрамолекулярной	исследовательский
			химии. Самосборка.	эксперимент:
			Методы синтеза	Газофазный синтез
			наночастиц: «мягкой	нанокристаллического
			химией» — золь-гель,	хлорида аммония.
			«гомогенного	Получение золей
			осаждения»,	наномагнетита,
			обращённо-	наноразмерного
			мицеллярный,	диоксида титана,
			микроэмульсионный;	берлинской лазури.
			термолиз, CVD.	Получение нанопленок
			Методы стабилизации	серебра на стеклянной
			наночастиц:	подложке. Оценка их
			папочастиц.	подложке. Оценка их

		стерическая, хелатная,	толщины.
		электростатическая,	Промежуточная
		иммобилизацией	аттестация
		в матрице.	
		Направленный синтез	
		нанообъектов:	
		квантовые точки,	
		нанопленки, объемные	
		наноматериалы.	
		Модификация свойств	
		наноматериалов	
Итого по разделу	10		
Всего количество часов	34		
по Программе за год			

11 КЛАСС

$N_{\underline{o}}$	Наименование	Количество	Программное	Характеристика
n/n	разделов	часов	содержание	деятельности
	и тем курса			обучающихся
Разде	ел 6. Методы исследо	ования наност	руктурированных веще	ств и материалов
6.1	Оптические	4	Оптические свойства	Учебно-
	методы		наночастиц	исследовательский
			и наноматериалов.	эксперимент:
			Микроскопия.	Микроскопическое
			Дифракционный	изучение препаратов
			предел. Фотометрия.	наносеребра на стеклах
			Спектрофотометрия:	
			измерение пропускания,	
			поглощения,	
			люминесценции.	
			Динамическое	
			светорассеяние	
6.2	Электронная	3	Просвечивающая	Практическая работа:
	микроскопия		электронная	Сравнительный анализ
			микроскопия.	изображений
			Сканирующая	наноструктур,
			электронная	полученных
			микроскопия.	электронной
			Особенности изучения	микроскопией
			биологических	
			объектов	
			на наноуровне	
6.3	Рентгеновская	4	Рентгенофазовый	Практическая работа:
	дифрактометрия		анализ. Уширение	Визуализация структур
			пиков как признак	биополимеров,
			нанообъекта и как	полученных методом
			способ оценки размера	рентгеноструктурного
			кристаллитов.	анализа
			Рентгеноструктурный	
			анализ. Определение	
			структуры	
			наноразмерных	
			объектов на атомном	
			уровне	

			1_	T
6.4	Сканирующая	6	Туннельная	Учебно-
	зондовая		микроскопия. Атомно-	исследовательский
	микроскопия		силовая микроскопия.	эксперимент:
			Анализ	Изучение поверхности
			наноструктуры	методом атомно-
			поверхностей.	силовой микроскопии.
			Статический	
			и динамический	Практическая работа:
			режим сканирования	Анализ изображений,
				полученных методом
				атомно-силовой
				микроскопии,
				с помощью
				современного
				программного
				обеспечения
Итог	о по разделу	17		
Разд	ел 7. Функциональны	е свойства н	<u> </u>	веществ и материалов
7.1	Функциональные	5	Сверхнизкая	Учебно-
	свойства вещества,		смачиваемость.	исследовательский
	обеспечиваемые		Сверхпрочность.	эксперимент:
	наноматериалами		Высокотемпературная	Изучение «эффекта
	1		сверхпроводимость.	лотоса» на примере
			Сверхфильтрация.	лепестка розы.
			Сверхъяркость	Измерение краевого
			светоиспускания.	угла
			Сухая адгезия	
			(биомиметика	
			геккона). Магнитные	
			свойства	
Итог	о по разделу	5		
	<u> </u>	– перспекти	 вы развития и состояни	 е науки
	егодняшний день		I	
8.1	Современные	1	Общий обзор	Викторина:
	применения	_	современных	Нанотехнологии
	нанотехнологии		применений	в нашей жизни
			нанотехнологии	в нашеи жизни
			nano i emiosioi fili	

1				1
8.2	Углеродные	2	Особая роль углерода	Практическая работа:
	наноматериалы		в наномире.	Моделирование
			Фуллерены, графен,	пространственной
			нанотрубки	структуры фуллеренов
8.3	Наноматериалы	2	Наноматериалы	Учебно-
	для энергетики		в топливных	исследовательский
			элементах.	эксперимент:
			Литий-ионные	Измерение емкости
			аккумуляторы.	литий-ионного
			Суперконденсаторы	аккумулятора
8.4	Наноэлектроника	2	Закон Мура.	Практическая работа:
			Технологический	Анализ изображения
			процесс производства	поверхности компакт-
			интегральных	диска
			микросхем. Системы	
			записи информации	
8.5	Наноматериалы	2	Нанодиагностика.	Практическая работа:
	в медицине		Применение	Визуализация
	и экологии		наноматериалов	пространственной
			в терапии.	структуры
			Наносорбенты.	нанобиопрепаратов
			Фотокатализаторы.	с помощью
			Самоочистка	современного
				программного
				обеспечения
Итог	о по разделу	9		
Разд	ел 9. Актуальные про	блемы в обла	асти нанохимии и нанот	ехнологии
9.1	Дискуссия	3	Актуальные проблемы	Итоговая аттестация.
			в области нанохимии	Зачетная работа
			и нанотехнологии	
Итого по разделу 3				
Всег	о количество часов	34		
	рограмме за год			

ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

Методическое обеспечение реализации Программы

При реализации Программы в учебном процессе используются методические пособия, дидактические материалы, фото- и видеоматериалы, конструкторы для создания шаро-стержневых моделей химических структур; журналы и книги, обзоры и оригинальные публикации, базы данных, программное обеспечение для рисования химических структур и визуализации пространственных объектов, прочие материалы в Сети Интернет.

При проведении занятий используются:

- словесные методы обучения: лекции, объяснения, беседы, консультации;
- наглядные методы обучения: презентации, видеоматериалы, визуализации;
- исследовательские методы обучения выполнение обучающимися определенных исследовательских заданий.

Усвоение материала контролируется при помощи тестирования и выполнения практических заданий. Заключительное занятие проводится в форме зачетной работы.

Материально-технические условия реализации Программы

Продуктивность работы во многом зависит от качества материальнотехнического оснащения процесса. Программа реализуется в аудитории образовательной организации с применением технических средств обучения и лабораторного оборудования:

- компьютеры учителя и обучающихся;
- интерактивная доска;
- учебно-научное оборудование по физике и химии.

ЛИТЕРАТУРА И ЭЛЕКТРОННЫЕ РЕСУРСЫ

Нормативная база

- 1. Федеральный закон от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации».
- 2. Федеральный государственный образовательный стандарт среднего общего образования (утвержден приказом Минобрнауки России от 17 мая 2012 г. № 413; зарегистрирован Минюстом России 7 июня 2012 г. № 24480).
- 3. Федеральная образовательная программа среднего общего образования (утверждена приказом Минпросвещения России от 18 мая 2023 г. № 371; зарегистрирован Минюстом России 12 июля 2023 г. № 74228).

Список литературы

- 1. Ахметов М.А. Введение в нанотехнологии. Химия : учебное пособие для учащихся 10–11 классов средних общеобразовательных учреждений / М.А. Ахметов. Санкт-Петербург : Образовательный центр «Участие», Образовательные проекты, 2012. 108 с.
- 2. Ахметова А.И. «ФемтоСкан Онлайн»: обработка и фильтрация изображений / А.И. Ахметова, Д.И. Яминский, И.В. Яминский // Наноиндустрия. 2024. T. 17, № 3-4(127). C. 178-183.
- 3. Богатырев В.А. Методы синтеза наночастиц с плазмонным резонансом / В.А. Богатырев, Л.А. Дыкман, Н.Г. Хлебцов : учебное пособие. Саратов : СГУ им. Н.Г. Чернышевского, 2009. 35 с.
- 4. Волкова С.А. Современные исследования в области нанотехнологий в содержании химического образования / С.А. Волкова. Москва, 2015. 304 с.
- 5. Гудилин Е.А. Нанотехнологии прорыв в будущее! / Е.А. Гудилин // Образовательная политика. 2020. № S5. С. 54–57.
- 6. Еремин В.В. Нанохимия и нанотехнологии / В.В. Ерёмин, А.А. Дроздов. Москва : Дрофа, 2009. 112 с.
- 7. Зимон А.Д. Занимательная коллоидная химия / А.Д. Зимон. Москва : URSS, 2017. 253 с.

- 8. Мельникова Н. Получение и изучение свойств веществ, состоящих из частиц нано- и микроразмеров / Н. Мельникова, Е. Гнеушева, Б. Маштаков. Санкт-Петербург: Школьная лига, Издательство «Лема», 2013. 20 с.
- 9. Микро- и наномир современных материалов / под ред. Ю.Д. Третьякова. Москва : Химфак МГУ, 2006. 68 с.
- 10. Нанотехнологии. Азбука для всех / под ред. Ю.Д. Третьякова. Москва : Φ ИЗМАТЛИТ, 2008. 368 с.
- 11. О включении основ нанохимии в содержание школьного химического образования / С.А. Волкова, А.А. Ибатуллин, С.В. Рогатых [и др.] // Химия в школе. -2023. -№ 6. С. 19–24.
- 12. Пять нобелевских уроков (практикум для старшеклассников по сканирующей зондовой микроскопии) / А.В. Большакова, Е.В. Дубровин, А.Д. Протопопова [и др.]. Москва : Центр перспективных технологий, 2013. 94 с.
- 13. Светухин В.В. Основы нанотехнологий. $10-11\,$ классы : учебное пособие / В.В. Светухин, И.О. Явтушенко. 3-е изд., стер. Москва : Просвещение, $2023.-111\,$ с.
- 14. Словарь нанотехнологических и связанных с нанотехнологиями терминов / Г.Г. Борисенко, И.В. Гольдт, Е.А. Гудилин [и др.]. Москва : Φ ИЗМАТЛИТ, 2010.-528 с.
- 15. Теория и практика сканирующей зондовой микроскопии: новые решения для физики, химии, биологии и медицины / А.И. Ахметова, О.В. Иванов, Н.Е. Максимова [и др.] // Наноиндустрия. 2023. Т. 16, № 2(120). С. 88—95.
- 16. Щербаков А.Б. Практикум по наноматериалам и нанотехнологиям / А.Б. Щербаков, В.К. Иванов. Москва : МГУ, 2019. 368 с.

Интернет-источники

- 1. Всероссийская интернет-олимпиада по нанотехнологиям [Электронный ресурс]. URL: https://enanos.nanometer.ru/
 - 2. Наноград [Электронный ресурс]. URL: https://palm.school/

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 640527729349926770582792246281479462382890807227

Владелец Тумова Валентина Хусейновна

Действителен С 23.09.2025 по 23.09.2026